5,178 research outputs found

    Multi-Agent System Control and Coordination of an Electrical Network

    No full text
    Multi-Agent Systems (MAS) have the potential to solve Active Network Management (ANM) problems arising from an increase in Distributed Energy Resources (DER). The aim of this research is to integrate a MAS into an electrical network emulation for the purpose of implementing ANM. Initially an overview of agents and MAS and how their characteristics can be used to control and coordinate an electrical network is presented. An electrical network comprising a real-time emulated transmission network connected to a live DER network controlled and coordinated by a MAS is then constructed. The MAS is then used to solve a simple ANM problem: the control and coordination of an electrical network in order to maintain frequency within operational limits. The research concludes that a MAS is successful in solving this ANM problem and also that in the future the developed MAS can be applied to other ANM problems. © 2012 IEEE

    Norovirus Infection and Disease in an Ecuadorian Birth Cohort: Association of Certain Norovirus Genotypes With Host FUT2 Secretor Status.

    Get PDF
    BACKGROUND: Although norovirus is the most common cause of gastroenteritis, there are few data on the community incidence of infection/disease or the patterns of acquired immunity or innate resistance to norovirus. METHODS: We followed a community-based birth cohort of 194 children in Ecuador with the aim to estimate (1) the incidence of norovirus gastroenteritis from birth to age 3 years, (2) the protective effect of norovirus infection against subsequent infection/disease, and (3) the association of infection and disease with FUT2 secretor status. RESULTS: Over the 3-year period, we detected a mean of 2.26 diarrheal episodes per child (range, 0-12 episodes). Norovirus was detected in 260 samples (18%) but was not found more frequently in diarrheal samples (79 of 438 [18%]), compared with diarrhea-free samples (181 of 1016 [18%]; P = .919). A total of 66% of children had at least 1 norovirus infection during the first 3 years of life, and 40% of children had 2 infections. Previous norovirus infections were not associated with the risk of subsequent infection. All genogroup II, genotype 4 (GII.4) infections were among secretor-positive children (P < .001), but higher rates of non-GII.4 infections were found in secretor-negative children (relative risk, 0.56; P = .029). CONCLUSIONS: GII.4 infections were uniquely detected in secretor-positive children, while non-GII.4 infections were more often found in secretor-negative children

    Application of the operator product expansion to the short distance behavior of nuclear potentials

    Get PDF
    We investigate the short distance behavior of nucleon-nucleon (NN) potentials defined through Bethe-Salpeter wave functions, by perturbatively calculating anomalous dimensions of 6-quark operators in QCD. Thanks to the asymptotic freedom of QCD, 1-loop computations give certain exact results for the potentials in the zero distance limit. In particular the functional form of the S-state central NN potential at short distance rr is predicted to be a little weaker than r2r^{-2}. On the other hand, due to the intriguing character of the anomalous dimension spectrum, perturbative considerations alone can not determine whether this potential is repulsive or attractive at short distances. A crude estimation suggests that the force at short distance is repulsive, as found numerically in lattice QCD. A similar behavior is found for the tensor potential.Comment: 40 pages, no figure

    The effect of sexual selection on adaptation and extinction under increasing temperatures

    Get PDF
    Strong sexual selection has been reported to both enhance and hinder the adaptive capacity and persistence of populations when exposed to novel environments. Consequently, how sexual selection influences population adaption and persistence under stress remains widely debated. Here we present two empirical investigations of the fitness consequences of sexual selection on populations of the Indian meal moth, Plodia interpunctella, exposed to stable or gradually increasing temperatures. When faced with increasing temperatures strong sexual selection was associated with both increased fecundity and offspring survival compared to populations experiencing weak sexual selection, suggesting sexual selection acts to drive adaptive evolution by favouring beneficial alleles. Strong sexual selection did not, however, delay extinction when the temperature became excessively high. By manipulating individuals’ mating opportunities during fitness assays we were able to assess the effect of multiple mating independently from the effect of population-level sexual selection, and found that polyandry has a positive effect on both fecundity and offspring survival under increasing temperatures in those populations evolving with weak sexual selection. Within stable temperatures there were some benefits from strong sexual selection but these were not consistent across the entire experiment, possibly reflecting changing costs and benefits of sexual selection under stabilising and directional selection. These results indicate that sexual selection can provide a buffer against climate change and increase adaptation rates within a continuously changing environment. These positive effects of sexual selection may however be too small to protect populations and delay extinction when environmental changes are relatively rapid

    Petrous bone diagenesis: a multi-analytical approach

    Get PDF
    © 2019 Elsevier B.V. The discovery of petrous bone as an excellent repository for ancient biomolecules has been a turning point in biomolecular archaeology, especially in aDNA research, but excessive and uncontrolled sampling could result in loss of this valuable resource for future research. This study reports on the histological (optical microscopy), physical (FTIR-ATR), elemental (CHN) and biochemical (collagen and DNA analysis) preservation of 15 human petrous bones spanning from the c. 2100 BCE to 1850 CE. Through the combined application of a number of diagenetic parameters (general histological index; infrared splitting factor; carbonate/phosphate ratio; amide/phosphate ratio; col wt%; % C, % N and C/N of whole bone and collagen; % endogenous DNA), we provide new insights into petrous bone micromorphological characteristics and diagenesis, and new evidence to enhance screening practices for aDNA and collagen analysis.MJC was supported by Danish National Research Foundation (DNRF128) and KP from the Leverhulme Trust (PLP-2012-116). MEA thanks The Danish National Resarch Foundation (DNRF94), the Lundbeck Foundation, the University of Copehagen (KU2016 programme) and the Vellux Foundations (Villum Young Investigator programme). IK would like to thank Onassis Foundation (grant no. F ZL 047-1/2015-2016), Leventis Foundation and the Greek Archaeological Committee UK (GACUK)

    An automatic method to generate domain-specific investigator networks using PubMed abstracts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Collaboration among investigators has become critical to scientific research. This includes ad hoc collaboration established through personal contacts as well as formal consortia established by funding agencies. Continued growth in online resources for scientific research and communication has promoted the development of highly networked research communities. Extending these networks globally requires identifying additional investigators in a given domain, profiling their research interests, and collecting current contact information. We present a novel strategy for building investigator networks dynamically and producing detailed investigator profiles using data available in PubMed abstracts.</p> <p>Results</p> <p>We developed a novel strategy to obtain detailed investigator information by automatically parsing the affiliation string in PubMed records. We illustrated the results by using a published literature database in human genome epidemiology (HuGE Pub Lit) as a test case. Our parsing strategy extracted country information from 92.1% of the affiliation strings in a random sample of PubMed records and in 97.0% of HuGE records, with accuracies of 94.0% and 91.0%, respectively. Institution information was parsed from 91.3% of the general PubMed records (accuracy 86.8%) and from 94.2% of HuGE PubMed records (accuracy 87.0). We demonstrated the application of our approach to dynamic creation of investigator networks by creating a prototype information system containing a large database of PubMed abstracts relevant to human genome epidemiology (HuGE Pub Lit), indexed using PubMed medical subject headings converted to Unified Medical Language System concepts. Our method was able to identify 70–90% of the investigators/collaborators in three different human genetics fields; it also successfully identified 9 of 10 genetics investigators within the PREBIC network, an existing preterm birth research network.</p> <p>Conclusion</p> <p>We successfully created a web-based prototype capable of creating domain-specific investigator networks based on an application that accurately generates detailed investigator profiles from PubMed abstracts combined with robust standard vocabularies. This approach could be used for other biomedical fields to efficiently establish domain-specific investigator networks.</p

    Topological Analysis of Metabolic Networks Integrating Co-Segregating Transcriptomes and Metabolomes in Type 2 Diabetic Rat Congenic Series

    Get PDF
    Background: The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus is caused by complex organ-specific cellular mechanisms contributing to impaired insulin secretion and insulin resistance. Methods: We used systematic metabotyping by 1H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualise shortest paths between metabolites and genes significantly associated with each genomic block. Results: Despite strong genomic similarities (95-99%) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific metabotypes (mQTL) and genome-wide expression traits (eQTL). Variation in key metabolites like glucose, succinate, lactate or 3-hydroxybutyrate, and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing shortest path length drove prioritization of biological validations by gene silencing. Conclusions: These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulations and to characterize novel functional roles for genes determining tissue-specific metabolism

    An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung

    Full text link
    Two effects, jet broadening and gluon bremsstrahlung induced by the propagation of a highly energetic quark in dense QCD matter, are reconsidered from effective theory point of view. We modify the standard Soft Collinear Effective Theory (SCET) Lagrangian to include Glauber modes, which are needed to implement the interactions between the medium and the collinear fields. We derive the Feynman rules for this Lagrangian and show that it is invariant under soft and collinear gauge transformations. We find that the newly constructed theory SCETG_{\rm G} recovers exactly the general result for the transverse momentum broadening of jets. In the limit where the radiated gluons are significantly less energetic than the parent quark, we obtain a jet energy-loss kernel identical to the one discussed in the reaction operator approach to parton propagation in matter. In the framework of SCETG_{\rm G} we present results for the fully-differential bremsstrahlung spectrum for both the incoherent and the Landau-Pomeranchunk-Migdal suppressed regimes beyond the soft-gluon approximation. Gauge invariance of the physics results is demonstrated explicitly by performing the calculations in both the light-cone and covariant RξR_{\xi} gauges. We also show how the process-dependent medium-induced radiative corrections factorize from the jet production cross section on the example of the quark jets considered here.Comment: 52 pages, 15 pdf figures, as published in JHE
    corecore